

AFE-CIM: A Current-Domain Compute-In-Memory Macro for Analog-to-Feature Extraction

Sudarshan Sharma*, Wei-Chun Wang*, Coleman DeLude, Minah Lee, Nael Mizanur

Rahman, Narasimha Vasishta Kidambi, Justin Romberg and Saibal Mukhopadhyay

Electrical and Computer Engineering

Georgia Institute of Technology, USA

ssharma497@gatech.edu

*equal contribution

Outline

Motivation

AFE-CIM

- Approach
- Circuit Motivation
- Architecture
- Measurement Result
- Chip Summary
- Application- Simulation Study from Measurement Data
 - Digital Beamforming
 - Image Classification

AFE-Motivation

Typical Sensor Front-End

Sensor Array

Problems

Larger ADC powerData deluge challenge

Analog-To-Feature Extraction

Reduces data while retaining quality for downstream tasks

Reduction in sensor powerReduction in output data volume

AFE Compute-IN-Memory

Analog-Vector Digital Matrix Multiplication (A/D VMM) using Compute-In-Memory (CIM) technique.

AFE Compute-In-Memory (CIM)

Approach

The design employs an analog-vector digitalmatrix multiplication (A/D-VMM) engine to compute a weighted linear combination of input analog signals to generate lower-dimension digital features.

□The real time update of weight matrix ₩ supports adaptive feature extraction

Circuit Level Motivation - I

Upon varying the A-WL from 0.4 to 1V and storing 1 or 0 in the SRAM, we observe a highly linear on-current curve and negligible off-current respectively.

Circuit Level Motivation - II

Accumulated current through each bitline undergoes shift and add operation in analog domain

Current mirror ratios for each column designed to reduce the current before combination.

Circuit Level Motivation - III

[1] B. D. Smith, "An Unusual Electronic Analog-Digital Conversion Method," in *IRE Transactions on Instrumentation*, vol. PGI-5, pp. 155-160, June 1956, doi: 10.1109/IRE-I.1956.5007017.

[2] D. G. Nairn and C. A. T. Salama, "Current-mode algorithmic analog-to-digital converters," in IEEE Journal of Solid-State Circuits, vol. 25, no. 4, pp. 997-1004, Aug. 1990, doi: 10.1109/4.58292.

Architecture

AFE-CIM Simulation and Measurement Results

Simulation

Measurement Results –I

The features $[y_{out}(t)]$ generated by AFE-CIM are measured considering random W and/or varying $v_{in}(t)$. The ADC output increases linearly with V_{min} and with the norm of the input vector v_{in} .

Measurement Results –II

Given a fixed v_{in} and random W, the measured ADC output for the feature $y_k(t)$ increases linearly with an increase in $||W_k||$.

Measurement Results –III

Trend: If diff b/w max and min ADC output decreases that frequency determines the throughput.

The maximum AFE-CIM throughput is estimated by switching the input between $V_{max} \& V_{min}$ and computing the swing in the ADC output.

Physical Design & Area Overhead

The AFE-CIM layout and the pitch-matching of the BCA and ADC across 4 columns of the SRAM.

Peripheral circuits, including BCA and ADC occupied only 16% of the core area.

Chip Summary

Summary of Chip						
Technology	TSMC 28nm					
Chip Area (mm ²)	0.028					
Core Area	8T-SRAM w/ Current Accum.	u u u				
Application	Analog Feature Extractor	0.75				
MAC Operation	Analog					
Input Bit-Precision	Analog					
Weight Bit-Precision	4					
ADC Bit-Precision	8					
Total SRAM	8Kb					
Supply Voltage (Digital) (V)	0.9	9				
Supply Voltage (Analog) (V)	0.6~0.9					
Frequency (MHz)	200~600	2				
Power (mW)	77.18	3				
Performance (Giga sample/sec)	800~2400					

The chip summary, die-photo, area and power breakdown of the AFE-CIM in 28nm CMOS.

Comparison with Prior Works

	This Work	VLSI' 22 [4]	VLSI' 22 [6]	ISSCC' 21 [7]	TCASI' 21 [8]
Technology	28nm	22nm	12nm	22nm	28nm
Core Area (mm ²)	0.028	0.165 (excludes DAC area)	0.323	0.202	0.05
Cell Type	8T-SRAM w/ Current Accum.	9T-SRAM w/ C-2C Ladder	SRAM	6T-SRAM	Dual-SRAM
On-Chip Memory	8Kb	128Kb	8Kb	64Kb	16Kb
CLK Freq. (MHz)	200 - 600	145 - 240	800	100	214
ADC Precision	8	8	18	16/24	2 5
MAC Opereation	Analog	Analog	Digital	Digital	Analog
Input	Analog	8 bit	4-8 bit	1-8 bit	5 bit
Weight	4 bit	8 bit	4/8 bit	4/8/12/16 bit	2/4/8 bit
Throughput (TOPS)	0.8 - 2.4	0.6 - 1 (8b/8b)	1.343 (4b/4b)	3.3 (4b/4b)	0.125 (5b/8b)
Area Efficiency (TOPS/mm ²)	40 - 120	3.64 - 6.1 (8b/8b) (excludes DAC area)	41.58 (4b/4b)	16.33 (4b/4b)	2.455 (5b/8b)
Energy Efficiency (TOPS/W)	14.6 - 43.7	15.5 - 32.3 (8b/8b))	121 (4b/4b)	89 (4b/4b)	147.6 (5b/8b)

*One operation \approx multiplication of an analog input with a 4-bit weight or an addition.

*All power and throughput are measured for inference operation.

AFE-CIM Application – Simulation Study from Measurement Data

Sim. from Measurement Data

Use the error model to emulate the non-linearity in the VMM computation in AFE-CIM

Statistical ADC output referred error model

Beamforming using AFE-CIM

Trend: Error Lower the better

[3] C. DeLude et al., "Broadband Beamforming via Linear Embedding," arXiv preprint arXiv:2206.07143, 2022.

Image Class. using AFE-CIM

Thank you! Questions?

ssharma497@gatech.edu

Backup

108 MHz (measured) operation of the digital bit-line (BL/BLB) and word-line (WL) peripherals enables the real-time update of matrix W.

4-bit Weights

During A/D-VMM operation, the analog vector v_{in} is applied to the A-WL (analog word-line) of all rows and the 2T-read path of 8T-cell is used for CIM operation.

The read-currents from all cells in an SRAM column are accumulated at the A-RBL. The column currents from 4 A-RBLs are weighted by their bitsignificance and accumulated using Binary-weighted Bit-Current Accumulator (BCA).

The output current from the BCA represents one element of the feature vector (i.e., $y_k(t) =$ $w_k^T v_{in}(t)$), which is then digitized using an 8-bit current domain ADC.

The reference current is generated using a redundant column of the SRAM array with 64 number of on cells programmed to replicate half of the maximum current.

Scalability Simulation

We define linearity error (Δ) as:

Scalability Simulation

The power efficiency and compute density are higher for AFE-CIMs with more rows, thanks to higher parallelism in analog computation.

The normalized error distribution increases with the scaling number of rows due to the non-linearity introduced in the 2T read path and BCA block.

AN UNUSUAL ELECTRONIC ANALOG-DIGITAL CONVERSION METHOD

> Blanchard D. Smith, Jr. Melpar, Incorporated Falls Church, Virginia

Basic Coding Method

There are a number of methods of converting a d-c voltage or current into digital form, such as counting methods¹, feedback methods², and coding tube methods³. These methods have been adequately described in the literature and are not covered here. The method presented here has not been given particular attention in the literature, although it was partly covered in a thesis by R.P. Sallen at M.I.T. in 1949. The method discussed in this paper can be seen to derive from one fundamental method of increasing the number of digits from any given coding system, namely by cascading two or more such systems. Figure 1 $V_1 = 21.1$ A = 16

$$V_1 = 21.1$$
 $D_1 = 1$

$$V_2 = 2(21.1 - 16) = 10.2$$
 $D_2 = 0$

$$V_3 = 2(10.2) = 20.4$$
 $D_3 = 1$

$$V_4 = 2(20.4 - 16) = 8.8$$
 $D_4 = 0$

$$V_5 = 2(8.8) = 17.6$$
 $D_5 = 1$

Fig. 4 - Numerical example (binary code).

Approach

Architecture

Architecture

