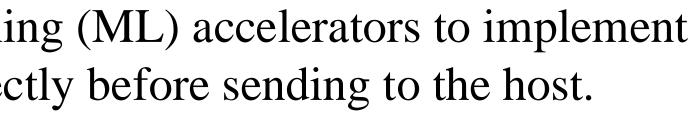
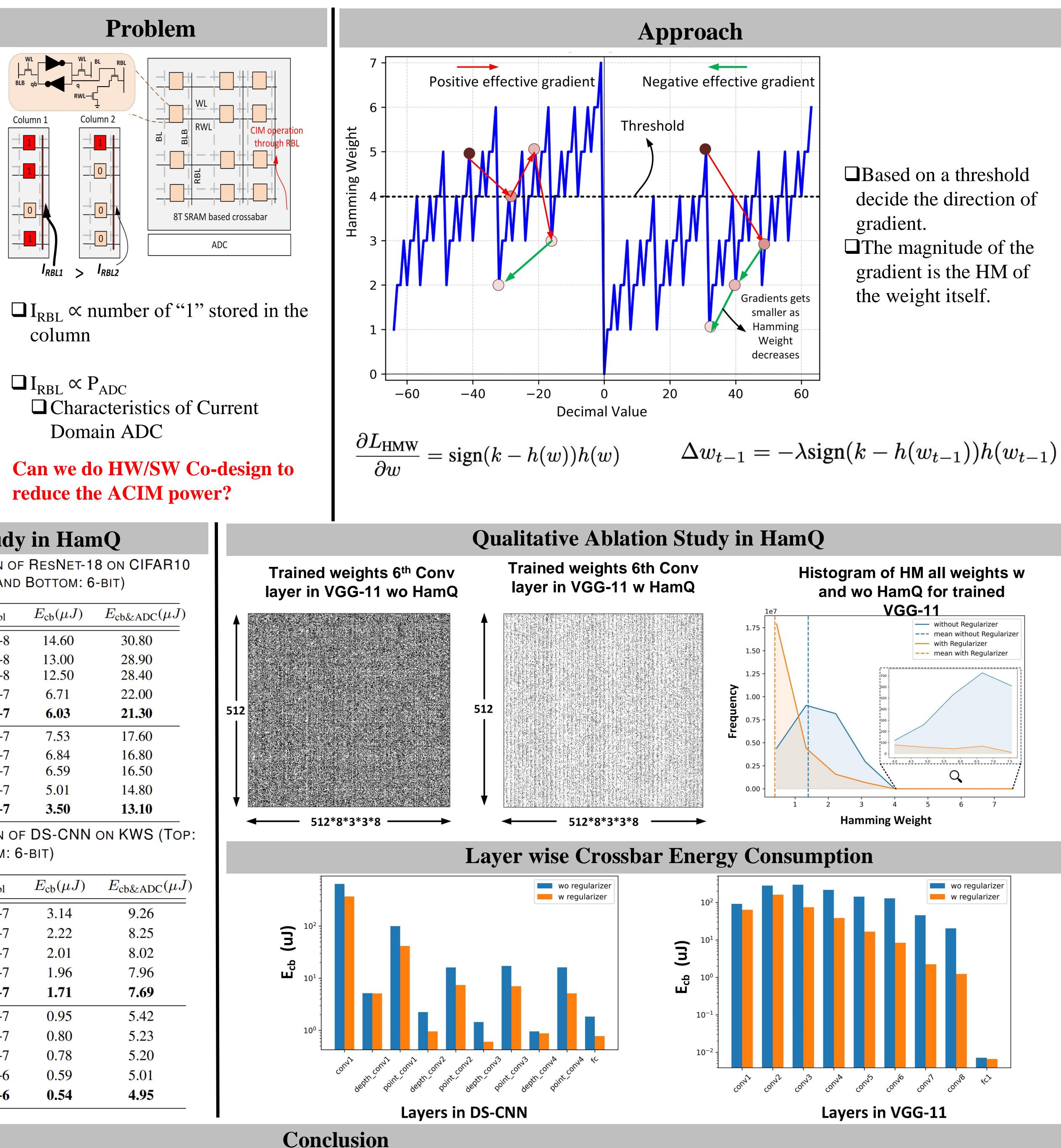


Intelligent Sensor Node

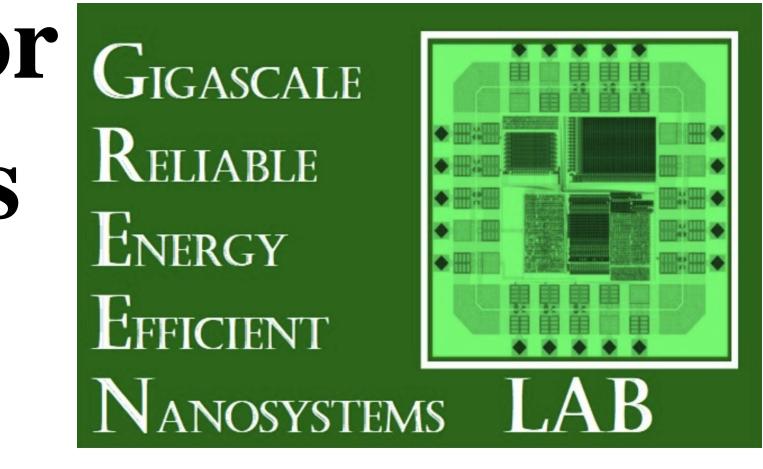
- □ Intelligent Sensors comprises of in-house Machine Learning (ML) accelerators to implement different task specific models on the raw-sensor data directly before sending to the host.
- Analog Compute-in-Memory (ACIM) provides an energy efficient architecture to implement these models within the memory to reduce data transfer power and increase area efficiency.
- This work enhances the energy efficiency of ACIM implementing ML models using HamQ a Hamming weight-based quantization framework based on a novel regularizer

Obtain the corresponding accumulation and ADC pow Calculate the number of cycles required for layer exec **Compute the Energy corresponding to the layer**


ACKNOWLEDGEMENT


This work was supported in part by CogniSense, one of seven centers in JUMP 2.0, a Semiconductor Research Corporation (SRC) program sponsored by DARPA.

HamQ: Hamming Weight-based Energy Aware Quantization for Analog Compute-In-Memory Accelerator in Intelligent Sensors


Sudarshan Sharma*, Beomseok Kang*, Narasimha Vasishta Kidambi and Saibal Mukhopadhyay *Equally Credited Authors School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA

Method	Accuracy	E_{sim_bl}	$E_{\rm cb}(\mu J)$	$E_{\rm cb\&AD}$
Baseline	88.20%	1.34e+8	14.60	30.80
L_1 Reg. [34] Ours ($\lambda = 1.0e-6$)	89.02% 89.01%	1.20e+8 1.15e+8	13.00 12.50	28.90 28.40
Ours ($\lambda = 1.0e-5$)	86.73%	6.17e+7	6.71	22.00
Ours ($\lambda = 1.0e-4$)	79.01%	5.22e+7	6.03	21.30
Baseline	88.24%	9.56e+7	7.53	17.60
L_1 Reg. [34]	88.58%	8.81e+7	6.84	16.80
Ours ($\lambda = 1.0e-6$)	88.26%	8.45e+7	6.59	16.50
Ours ($\lambda = 1.0e-5$)	87.29%	6.50e+7	5.01	14.80
Ours ($\lambda = 1.0e-4$) ACCURACY AND ENE	73.23% RGY CONSU 8-BIT AND			13.10 ON KWS
	rgy C onsu	IMPTION OI	DS-CNN	
ACCURACY AND ENE	RGY CONSU 8-BIT AND	імртіол оі Воттом: 6	= DS-CNN Б-ВІТ)	ON KWS
ACCURACY AND ENE Method	RGY CONSU 8-BIT AND Accuracy	IMPTION OI Воттом: 6 <i>E</i> sim_bl	= DS-CNN 5-BIT) $E_{\rm cb}(\mu J)$	ON KWS $E_{cb\&AI}$
ACCURACY AND ENE Method Baseline	RGY CONSU 8-BIT AND Accuracy 91.82%	IMPTION OF BOTTOM: 6 E_{sim_bl} 2.88e+7	= DS-CNN G-BIT) $E_{cb}(\mu J)$ 3.14	ON KWS $E_{cb\&AI}$ 9.26
ACCURACY AND ENE Method Baseline L ₁ Reg. [34]	RGY CONSU 8-BIT AND Accuracy 91.82% 87.60%	имртіол он Воттом: 6 <u>E_{sim_bl}</u> 2.88е+7 2.04е+7	= DS-CNN 5-BIT) $E_{cb}(\mu J)$ 3.14 2.22	ON KWS <i>E</i> _{cb&AI} 9.26 8.25
ACCURACY AND ENE Method Baseline L_1 Reg. [34] Ours ($\lambda = 3.0e-5$)	RGY CONSU 8-BIT AND Accuracy 91.82% 87.60% 89.23%	IMPTION OF BOTTOM: 6 Esim_bl 2.88e+7 2.04e+7 1.86e+7	= DS-CNN 5-BIT) $E_{cb}(\mu J)$ 3.14 2.22 2.01	ON KWS <i>E</i> _{cb&AI} 9.26 8.25 8.02
ACCURACY AND ENE Method Baseline L_1 Reg. [34] Ours ($\lambda = 3.0e-5$) Ours ($\lambda = 5.0e-5$)	RGY CONSU 8-BIT AND Accuracy 91.82% 87.60% 89.23% 87.16%	IMPTION OF BOTTOM: 6 E_{sim_bl} 2.88e+7 2.04e+7 1.86e+7 1.81e+7	= DS-CNN $\overline{E_{cb}}(\mu J)$ 3.14 2.22 2.01 1.96	ON KWS E _{cb&AI} 9.26 8.25 8.02 7.96
ACCURACY AND ENE Method Baseline L_1 Reg. [34] Ours ($\lambda = 3.0e-5$) Ours ($\lambda = 5.0e-5$) Ours ($\lambda = 1.0e-4$)	RGY CONSU 8-BIT AND Accuracy 91.82% 87.60% 89.23% 87.16% 84.58%	IMPTION OF BOTTOM: 6 Esim_bl 2.88e+7 2.04e+7 1.86e+7 1.86e+7 1.81e+7 1.57e+7	= DS-CNN $\overline{F_{cb}}(\mu J)$ 3.14 2.22 2.01 1.96 1.71	ON KWS E _{cb&AI} 9.26 8.25 8.02 7.96 7.69
ACCURACY AND ENE Method Baseline L_1 Reg. [34] Ours ($\lambda = 3.0e-5$) Ours ($\lambda = 5.0e-5$) Ours ($\lambda = 1.0e-4$) Baseline	RGY CONSU 8-BIT AND Accuracy 91.82% 87.60% 89.23% 87.16% 84.58% 91.09%	IMPTION OF BOTTOM: 6 Esim_bl 2.88e+7 2.04e+7 1.86e+7 1.81e+7 1.81e+7 1.57e+7 1.42e+7	= DS-CNN $\overline{F_{cb}}(\mu J)$ 3.14 2.22 2.01 1.96 1.71 0.95	ON KWS E _{cb&AI} 9.26 8.25 8.02 7.96 7.69 5.42
ACCURACY AND ENE Method Baseline L_1 Reg. [34] Ours ($\lambda = 3.0e-5$) Ours ($\lambda = 5.0e-5$) Ours ($\lambda = 1.0e-4$) Baseline L_1 Reg. [34]	RGY CONSU 8-BIT AND Accuracy 91.82% 87.60% 89.23% 89.23% 87.16% 84.58% 91.09% 88.05%	IMPTION OF BOTTOM: 6 E_{sim_bl} 2.88e+7 2.04e+7 1.86e+7 1.81e+7 1.81e+7 1.42e+7 1.42e+7 1.16e+7	= DS-CNN $\overline{E_{cb}}(\mu J)$ 3.14 2.22 2.01 1.96 1.71 0.95 0.80	ON KWS E _{cb&AI} 9.26 8.25 8.02 7.96 7.69 5.42 5.23

umption by **54.0%** with a marginal accuracy degradation of **1.5%** for the 8-bit ResNet-18 model in CIFAR-10 image classification and by 42.7% with a 3.5% degradation for the 6-bit DS-CNN model in keyword spotting task.

